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Abstract—In this paper, we propose a new benchmark dataset
for still picture coding performance, named SPCP. SPCP is a
large-scale benchmark dataset covering 10 codecs, 310 configu-
rations, up to 101 quality parameters, 28 IQA metrics, and 3
computational times. The codecs are JPEG, MozJPEG, Jpegli,
JPEG2000, JPEG XR, JPEG XL, WebP, HEIC, and AVIF-
AOM/SVT. Also, we provide a public web interface for compar-
ative analysis of still picture coding performance. Covering clas-
sical and newer codecs, SPCP provides a standardized testbed to
support reproducible and fair comparison of image encoders. The
full dataset is publicly available to accelerate codec development
and evaluation in both academic and industrial communities. Qur
SPCP dataset is available at https:/fukushimalab.github.io/spcp/.

Index Terms—Still picture codec, IQA, dataset

I. INTRODUCTION

High-performance image coding is an essential technology
for information storage, and its standards are continually being
updated. Among image compression formats, JPEG [1], [2] is
a classic image compression format that still boasts the highest
market share today. According to a report by W3Techs, 73.9%
of websites use JPEG, while the newer encoding formats WebP
and AVIF account for only 17.8% and 0.9%, respectively.

JPEG has lower encoding efficiency compared to newer
formats, including WebP [3], JPEG XL [4], HEIC/HEIF [5],
and AVIF [6], [7]. However, because of its high adoption
rate, several JPEG tools have been proposed that maintain
JPEG decoding compatibility while enabling high compression
encoding. The libjpeg-turbo accelerates JPEG using SIMD
from the original library developed by the Independent JPEG
Group (IJG) (first released in 1991), and has been the official
reference implementation of ISO/IEC/ITU-T since 2019. It
also supports arithmetic coding extensions. MozJPEG [&]
is a library forked from libjpeg-turbo by Mozilla in 2014.
It is based on progressive JPEG (Annex G of ISO/IEC
10918-1) and can be optimized for multiple image quality
assessment (IQA) metrics such as PSNR, PSNR-HVS [9],
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[10], SSIM [ 1], and MS-SSIM [12]. MozJPEG also supports
arithmetic coding extensions. Jpegli [13] is a new library
released by Google in 2024 as part of the JPEG XL subproject.
Jpegli supports transcoding using XYB color space and JPEG
XL entropy coding. Note that it does not support arithmetic
coding and only supports Huffman optimization.

The next generation of JPEG standards includes JPEG
2000 [14] and JPEG XR [15], with JPEG XL [4] being
the latest addition. Additionally, there are encoding formats
developed based on intra-coding from video encoders, such
as VP8-based WebP [3], H.265/HEVC-based HEIC [5], AV1-
based AVIF (AOM) [6], and AVIF (SVT-AV1) [7], which ap-
plies scalable video technology. These formats achieve higher
coding efficiency without the limitations of JPEG bitstreams.
Furthermore, WebP and AVIF are supported by all standard
browsers, while JPEG XL and HEIC are only supported by
Safari; however, Firefox is expected to support JPEG XL.

The important factors for image coding are image quality,
compression ratio, and encoding/decoding speed. Thus, nu-
merous encoders offer multiple encoding options and quality
tuning options for several IQA metrics, allowing them to
handle the trade-off. However, there are not enough papers that
comprehensively evaluate the various combinations of images,
encoders, coding options, and IQA metrics. Most studies are
limited to demonstrating a few specific combinations.

In this paper, we propose a large-scale benchmark dataset,
named Still Picture Coding Performance (SPCP), which com-
prehensively evaluates various compression options and eval-
uation metrics for multiple encoders listed in Table 1. SPCP
maintains the results of encoding 31,000 times per image for
310 configurations, with up to 101 different quality parameters
(QPs). Additionally, 28 IQA metrics are evaluated, including
10 grayscale IQA metrics, 10 simplified color extensions of
grayscale IQA, 7 color metrics, and 1 video metric. The IQA
metrics used are as follows: Grayscale IQA ( PSNR-Y, ITW-
PSNR [16], PSNR-HVS [9], [10], SSIM [1 1], MS-SSIM [12],
IW-SSIM [16], VIF [17], GMSD [18], FSIM [19], NLPD [20]
), Color IQA ( PSNR-RGB, MDSI [21], Butteraugli (p=1,2,3,
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max) [22], [23], SSIMULACRA?2 [24]) and VMAF [25], a
video IQA, were used as intra-coding. Note that when using
grayscale IQA for color image evaluation, each channel is
converted to YUV in the BT.709 color space, and IQA is
performed on each channel, resulting in an 8:1:1 ratio. Also,
encoding, decoding, and total times are evaluated. Including
bit-per-pixel (bpp) information, SPCP provides 1,001,920 =
101 x 310 x (28 + 3 + 1) data points in 32-bit floating-point
format, i.e., 3.91 MB per image. In addition, we provide an
interface for both web and local data.

II. SPCP BENCHMARK DATASET

The following sections describe the three aspects of this
benchmark, specifically the image codec, IQA, and dataset.

A. Image Codec

We utilize JPEG-compatible encoders such as libjpeg-turbo,
MozJPEG, and Jpegli, as well as advanced image encoders
including JPEG 2000, JPEG XR, JPEG XL, WebP, HEIF, and
AVIF (AOM, SVT). Most codecs support color spaces such as
YUV420, 444, 440, and 422. Although aspect ratio differences
in downsampling have a minor impact on PSNR, they have a
significant effect on subjective quality. Therefore, YUV440
and 422 were not adopted for SPCP. The following sections
provide an overview of each codec.

1) JPEG: Since the JPEG standard was introduced in 1992,
several new JPEG standards for image coding have been de-
veloped. JPEG LS (1998) [26] aimed at lossless compression.
JPEG 2000 (2000) [14] targeted high compression, JPEG XR
(2009) [15] is based on Windows Media Photo / HD Photo,
considering both high compression and lightweight design.
JPEG XT (2015) is a functional JPEG extension to handle
higher bits, HDR, lossless coding, and alpha channels, but not
for coding efficiency. JPEG XS (2019) is for visually lossless
coding with low latency and complexity; thus, it is not a direct
competitor to efficient image codecs. JPEG XL (2021) [4],
[27] and its Jpegli subproject improved coding efficiency.
Among these standards, only JPEG, JPEG XT, and Jpegli
are compatible with each other. First, we will discuss JPEG-
compatible codecs of libjpeg-turbo, MozJPEG, and Jpegli.

libjpeg-turbo is one of the fastest JPEG libraries optimized
by SIMD. It can select baseline (B) and progressive (P) encod-
ing. Its entropy coders are standard Huffman (S), optimized
Huffman (O), and arithmetic coding (A). For progressive
coding, optimized tables are used for the progressive mode.
Additionally, we can use arithmetic coding implemented on
MozJPEG using transcoding (MA), which has a different
performance. Also, we can use new entropy coding, such as
ANS, with JPEG XL transcoding (XL) without any degrada-
tion. Color spaces include YUV420, YUV422, YUV440, and
YUV444, but YUV420 and YUV444 are adopted. The valid
coding combinations for SPCP are 9: BS, BO, BA, BMA,
BXL, PO, PA, PMA, and PXL. Note that if the only difference
in the encoding settings is the entropy coder, the output image
will not change; thus, IQA calculation can be omitted in JPEG-
compatible coding.

MozJPEG is based on progressive coding and cannot
use standard Huffman, requiring at least optimized Huffman.
Furthermore, the quantization table can be tuned for PSNR,
PSNRHVS, SSIM, and MS-SSIM. Note that arithmetic coding
and optimized Huffman coding have different DCT coeffi-
cients due to the tuning process. For focusing on the entropy
coder, we disable BA and PA of the native JPEG encoder
options, but we use the transcoder of MA, which is also the
MozJPEG product. There are 6 valid combinations for SPCP:
BO, BMA, BXL, PO, PMA, and PXL. The color space is the
same as in libjpeg-turbo. Note that MozJPEG is essentially
based on progressive coding, and the baseline coding has not
been sufficiently tuned. MozJPEG produces different output
even when the options for the cjpeg and jpegtran command-
line tools are the same. That is, the arithmetic coding results
with cjpeg and the Huffman coding results with cjpeg followed
by the arithmetic coding with jpegtran are different. However,
the libjpeg-turbo case is the same. This is because the DCT ta-
ble optimization differs between the -arithmetic and -optimize
options in cjpeg, resulting in different output images. However,
the difference is minimal. Since the output images differ, it is
necessary to re-execute IQA. In this case, arithmetic encoding
was performed using the transcoder.

Jpegli supports standard and optimized Huffman coding,
but does not support arithmetic coding. However, JPEG XL,
the original project of Jpegli, provides excellent transcoding
for JPEG. Additionally, the arithmetic coding can be supported
by MozJPEG’s transcoding. Note that the baseline coding only
supports standard Huffman coding; thus, we need transcoding
of optimized Huffman for the baseline mode. Therefore, the
valid combinations are 7: BS, BO, BMA, BXL, PH, PMA,
and PXL. In addition to YUV, the XYB color space can be
used. Note that 420 downsampling cannot be used in XYB;
thus, it is limited to 444. Furthermore, Jpegli is optimized for
Butteraugli [22], [23], similar to JPEG XL.

The DCT in JPEG [28], [29] includes the integer DCT
LLM [30], the fast AAN [31], and the float DCT. The float
version has slightly better coding performance than the integer
one. However, circuit implementation and other factors make
integer-based DCT more likely, and integer-based DCT is
faster. Therefore, in this experiment, integer-based conversion
was used in libjpeg-turbo and MozJPEG. Note that Jpegli only
supports JDCT_FLOAT; thus, float was used.

2) Next JPEG: JPEG 2000 quantizes and arithmetic-codes
frequency coefficients obtained by wavelet transform with
EBCOT. The Kakadu implementation was used for SPCP. The
input color space used was YUV420 and 444. Additionally,
two encoding configurations were handled regarding the quan-
tization of luminance and chrominance: one where they are
treated equally and another where luminance is prioritized. In
total, 4 coding options are handled.

JPEG XR employs a lifting scheme of the photo core
transform for frequency transform and also utilizes the photo
overlap transform for deblocking filtering. JPEG XR uses
YCoCg-R color space, not YUV, and we use 420 and 444
downsampling. For overlap parameters, we used 0, 1, and 2.



TABLE I: Image codecs and implementations. Conditions per image: the number of colorspaces X metric-tunes x modes. For
JPEG, we add a default setting (De), and red colored modes need transcoders. In total, 310 conditions per image.

Codec Library Year  Color Tunes QP Encoder modes Conditions per image
JPEG [1], [7] libjpeg-turbo 3.1.2 1992 420, 444 PSNR 0-100 BS, BO, BA, BMA, BXL, PO, PA, PMA, PXL, De 19=2x1x9+1
MozIPEG [¢] MozJPEG v4.1.5 2014 420, 444 PSNR, SSIM, PSNRHVS, MS-SSIM 0-100 BO, BMA, BXL, PO, PMA, PXL, De 49 =2x4x6+1
Jpegli [13] Jpegli v0.11.1 2024 420, 444, xyb  Butteraugli 1-100 BS, BO, BMA, BXL, PO, PMA, PXL, De 22=3x1xT7+1
JPEG 2000 [14] kakadu v86R 2000 420, 444 PSNR 1-99 no weight, yuv weight 4=2x1x2
JPEG XR [15] jxrlib 2019.10.9 2009 420, 444 PSNR, SSIM 0.0-1.0 overlap (0,1,2) 12=2x2x3
JPEG XL [4] libjx1 0.11.1 2021  xyb Butteraugli 0- 99 VarDCT (2 - 10), Modular (2 - 10), *1: debug mode | 18 =1 x 1 x (2x 9)
WebP [3] libwebp 1.6.0 2010 420, 420s PSNR 0-100 0-6 14=2x1x7
HEIC [5] 1ibx265 4.1, libde265 v1.0.16 2013 420, 444 PSNR, SSIM 0-100 (51) 0,1,2,56,7,9 28=2x2x7
AVIF (AOM) [6] | libaom 3.13.1, davld 1.5.1 2019 420, 444 PSNR, SSIM, 1Q, SSIMULACRA2, Butteraugli ~ 0-100 (64) 0-9 100 =2 x5x 10
AVIF (SVT) [7] SVT-AVI 3.1.2, davld 1.5.1 2020 420 PSNR, SSIM, 1Q, VQ 0-100 (64) 0-10 44=1x4x11

The quantized tables are tuned for PSNR and SSIM In total,
we have 12 coding options.

JPEG XL is the latest image coding based on the JPEG
standardization. Various encoding options can be specified,
grouped under the —effort switch, which specifies a trade-off
between speed and accuracy: 1 (fast) to 10 (slow). Note that
1 is reserved for debugging, hence the inclusion of 9 options.
Additionally, JPEG XL has two entirely different encoding
modes: VarDCT and Modular. The color space is XYB, and
while there is currently no option for downsampling, xyb444
can be specified. As a result, a total of 2 x 9 = 18 options
are available. Note that the modular mode produces the same
transformed coefficient; thus, IQA scores are unchanged under
different effort switches, which accelerates IQA computing.

3) Video Intra-based Encoder: Here, we explain WebP,
HEIF, and AVIF, which are video intra-based encoders.

WebP is based on VPS8 intra coding and offers various
options, but the —m switch allows you to specify a trade-
off between speed and accuracy. The range is 0 (fast) to 6
(slow). The color space is fixed at YUV420, and 444 cannot
be used. Instead, YUV420sharp (420s in short) has been
proposed, which increases the frequency. YUV420sharp is a
YUYV conversion and can, in principle, be used with any other
library. However, since it was introduced specifically for WebP,
it is evaluated here solely in the context of WebP. In total, 14
encoding options are supported.

HEIC (High-Efficiency Image Codec) is based on H.265/
HEVC intra coding and offers various options, with a preset to
specify the trade-off between speed and accuracy. The range is
0 (fast) to 9 (slow), but the presets 2—4 and 7-8 have the same
meaning for still image coding, respectively. When optimizing
the coding coefficients, we can tune them for PSNR or SSIM
as an IQA metric. The used color spaces are YUV420 and
444. In total, 28 encoding options are supported. HEIC is a
default codec in HEIF (High Efficiency Image File Format)
containers, but HEIF can include various codecs. The intra
codec for HEVC images is often referred to as HEIF, but
for clarity, we will refer to it as HEIC here. For the HEIF
container, we use libheif 1.19.8.

AVIF (AV1 Image File Format) is based on the AV1
(AOMedia Video 1) intra coding and offers various options,
allowing users to specify a trade-off between speed and
accuracy via switches. The range is 0 (slow) to 9 (fast), but
the order is reversed. The libavif accepts the parameter of
speed (10), but it is the same for speed (9) for the AOM
codec. Note that the AVIF’s coding time is notably longer

than the other codecs. AVIF has an accelerated implementation
called SVT, which can be distinguished and described as AVIF
(AOM) and AVIF (SVT). Note that AVIF (SVT)’s option
has a range of 0-10, one more than AOM. Furthermore,
currently, only downsampled versions of the YUV420 color
space are supported for SVT. AOM has tune options for PSNR,
SSIM, IQ (image quality), SSIMULACRA?2, and Butteraugli.
SVT’s options are PSNR, SSIM, 1Q, and VQ (video quality).
Therefore, encoding combinations are 100 for AOM and 44
for SVT. For the AVIF container, we use libavif1.3.0.

B. IQA metrics

We use three types of IQA metrics: grayscale, color, and
video. For grayscale IQA, we use PSNR, IW-PSNR [16],
PSNR-HVS [9], [10], SSIM [I1], MS-SSIM [I2], IW-
SSIM [16], GMSD [18], FSIM [19], and NLPD [20]. Most
of these metrics are used for JPEG XL and JPEG Al [32].
These metrics are used for grayscale signals; thus, we use the
IQA metrics by converting color images to Y channel images.
Handling color information, we convert the colorspace using
BT.709, compute IQA for each channel, and then blend them
with 8:1:1. For color IQA, we use PSNR-RGB, MDSI [21],
Butteraugli (p = 1, 2, 3, max) [22], [23], SSIMULACRAZ2 [24].
For PSNR-RGB, compute MSE at once as a 3-channel signal
is a 1D vector. MDSI is the native color metric. Butteraugli
and SSIMULACRAZ2 are developed for coding distortion and
can natively handle color images. For Butteraugli, we can
change the pooling norm, and 4 types are used. For video IQA,
we use VMAF [25] as an intra codec, which is a grayscale
metric. Additionally, we include encoding/decoding/total time
as metrics.

SPCP requires IQA computation many times; thus, we
optimize IQA as fast as possible, such as through SIMD
optimization [33] and convolution optimization [34], [35].

C. Image dataset

In SPCP, image datasets were collected in 4 contexts: com-
mon image, IQA, super-resolution (SR), and coding datasets.
Table II shows the list, which can support a variety of images.
Classics are typical image datasets, such as Barbara, Baboon,
and Pepper. Kodak is also used in IQA datasets LIVE [36],
TID2013 [37], [38], MIDD-CAP [39], [40], but the sizes differ
because they have been cropped for subjective assessment.
Additionally, the coding datasets for the Challenge on Learned
Image Compression (CLIC) datasets of test (not validation),
covering 2021, 2023, 2024, and 2025, have been encoded.
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TABLE II: Dataset. * average size of variable-sized images.

Name Context  Images Size
Classics Common 20 547 x 54T*
Kodak Common 24 768 x 512
LIVE [36] IQA 29 597 x 597*
TID2013 [38] IQA 25 512 x 384
CSIQ [41] IQA 30 512 x 512
CID:IQ [42] QA 23 800 x 800
KADID-10K [43] IQA 81 512 x 384
URBANI100 [44] SR 100 879 x 879*
MANGAL109 [45] SR 109 982 x 982*
MIDD-CAP [40] Coding 24 496 x 496
CID22 [24] Coding 250 512 x 512
MCL-JCI [46] Coding 50 1920 x 1080
CLIC2021 Coding 60 1620 x 1620*
CLIC2022 Coding 30 1711 x 1711*
CLIC2024 Coding 32 1694 x 1694*
CLIC2025 Coding 30 1695 x 1695
Total - 917 961 x 961*

III. EXPERIMENTAL RESULTS

Since the results are enormous, please refer to the URL
for more detailed results: https://fukushimalab.github.io/spcp/.
Figure 1 shows the web interface that provides convenient
access to SPCP. On the website, users can select datasets
(Tab. II) through a dropdown menu and choose individual
images, for which thumbnail previews are displayed on mouse
hover. Encoder configurations can be selected by checkboxes,
and evaluation metrics can be chosen from a dropdown list.
The graph interface supports interactive zooming and panning,
logarithmic scaling or axis inversion, and delta plots against
a reference codec. It also provides Bjgntegaard delta rate
(BD-rate) [47] and BD-quality (e.g., BD-PSNR), with flexible
specification of both the metric range and the plotting range.
In addition, users may enable or disable averaging of results
across images at the same QP value. After setting, we can see
RD plots (Fig. 2) or BD-plots from selected reference (Fig. 3).

Figure 4 shows the scatter plots of the average time of
each QP and BD-rate of SSIMURACLA?2 from the JPEG 420
baseline for each condition (one of the CLIC2025 images).
The points circled in AVIF (AOM/SVT) represent the SSIM-
ULACRA? tune (blue) and IQ tune (green), each optimized
for SSIMULACRA2. AVIF (AOM) implementation achieves
the highest coding efficiency. Considering computation time,
JPEG2000 also offers a good balance. Compared to JPEG
420 baseline coding, encoding time differed by up to 3100
times (5.6ms / 17,500ms), with a BD-rate (SSIMULACRA?2)
improvement of -51.6%. Decoding speed differences were
limited to a maximum of about 25 times (6.5ms/162ms), with
HEIC being the slowest (plot omitted). AVIF was about 4.5
times and relatively fast. The total time required to encode and
decode all conditions for a single image (2048 x 1216) using
an AMD Threadripper 3970X (16-core/32-thread) was 20.1
hours. Calculating the entire dataset would take approximately
one year; thus, multiple computers were used for computation.

IV. CONCLUSION

This paper proposed SPCP, a benchmark dataset for the
comprehensive evaluation of image codecs. SPCP comprised
a large-scale collection of encoding results covering 310
configuration settings, 101 QPs, and 10 codecs across multiple
image datasets. As future work, we will support emerging
codecs such as JPEG Al, H.266/VVC intra, WebP2, and AVIF-
AV2, and incorporate new IQA metrics.
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